Perhitungan Struktur


Saya mendapat banyak email yang menanyakan bagaimana merencanakan pondasi untuk mesin-mesin, terutama yang mengeluarkan getaran. Untuk itu, saya tulis artikel ini sebagai sumbang saran bagi design engineer yang berkutat di perencanaan pondasi mesin. Dan saya ingin membagi pengalaman rekayasa dan desain tentang serba serbi pondasi dangkal khususnya untuk pondasi mesin (rotating equipment) secara umum saja.

Rotating equipment (RE), -saya cenderung memakai istilah RE saja diartikel ini untuk lebih spesifik dibanding kata “mesin”-, yang harus diletakkan langsung diatas pondasi beton, banyak macam jenisnya. Dan tiap jenis RE dapat memberikan efek yang harus diperhitungkan dalam mendesain pondasi pendukungnya.
Jenis RE yang sering dijumpai dalam plant/kilang Migas/Petrokimia/Refinery misalnya adalah:

1. Kompresor (Reciprocating dan Centrifugal).
2. Turbin (Gas dan Uap/Steam)
3. Pompa (Rotary dan Reciprocating)
4. Genset (biasanya hanya sebagai back up dari system catu daya listrik kilang).

Untuk rekayasa keteknikan pondasi RE ini, sebaiknya kita mempersenjatai diri dengan membaca beberapa referensi dari beberapa Code dan Standard internasional misalnya:
ASME B 73.1 M, ACI 207.2R, ACI 318 dan ACI 318R, ACI 504, kemudian serial API seperti API STD (610, 611, 612, 613, 616, 617, 618, 672, 674, 676, 677) & API RP 6869. Baik juga ditambah ISO 2631-1 & 2631-2 dan PIP REIE 686 & PIP STC 01015.

Sedangkan untuk pemahaman lebih lanjut, silahkan dibuka referensi kepustakaan seperti Design of Structures and Foundations for Vibrating Machines oleh Suresh C Arya, Michael O’Neill & George Pincus, juga Foundation Engineering Handbook oleh Hans F Winterkon & Hsai Yang Fang, plus Foundation Design for Vibration Machines oleh Suresh C Arya, Roland P Drewyer & George Pincus.

Sekedar mengingatkan dalam mendesain pondasi untuk RE yang mengeluarkan vibrasi, saya kutipkan pendapat suhu-suhu pondasi (Suresh C Arya, Michael O’Neill dan G Pincus) bahwa pondasi akan mengalami akibat getaran seperti berikut ini:

a. Vertical Excitation.
b. Horizontal Translation.
c. Rocking Exictation.
d. Torsional Excitation.
e. Coupled Horizontal Translation & Rocking Oscillation.

Dengan demikian, seorang design engineer harus mempertimbangkan bahwa bentuk/dimensi dan massa pondasi serta daya dukung tanah harus benar-benar kuat untuk menahan akibat getaran tersebut. Serta memperhitungkan faktor-faktor sekunder seperti kondisi sekeliling, antisipasi lemahnya workmanship dari pekerja lapangan dan lain sebagainya.

Disamping itu, pengertian atas beberapa istilah teknis dan nomenklatur yang juga patut dipahami, seperti:

a. High Tuned System (HTS) : adalah suatu sistem pondasi pendukung dimana kisaran frekwensi mesin dibawah frekwensi natural dari sistem secara keseluruhan.
b. Low-Tuned System (LTS): adalah suatu sistem pondasi pendukung dimana kisaran frekwensi mesin diatas frekwensi natural dari sistem secara keseluruhan.
c. Table Top (TT): Struktur beton bertulang berketinggian untuk menopang/sebagai dudukan RE.
d. f(n): Frekwensi natural dari system pondasi mesin dalam satuan Hertz.
e. ED: Modulus dinamis elastisitas beton dalam satuan MPa.
f. A: Batas ijin maximum getaran amplitude puncak ke puncak (peak to peak).
g. Grout: Material bersifat semen atau epoksi (epoxy) yang disediakan untuk keseragaman pondasi pendukung dan sebagai media transfer beban dari instalasi RE diatasnya ke pondasi. Grout diposisikan dibawah base plate/mounting plate/skid dari RE. Dan grout haruslah mempunyai sifat non shrink (tidak berkerut).

Menurut saya, atas dasar kepraktisan dan keekonomisan, lebih baik menerapkan azas desain Low-Tuned System (LTS) terutama untuk RE yang mempunyai RPM (revolutions per minute) tinggi. RE dengan RPM tinggi cenderung menghasilkan frekwensi natural yang lebih tinggi dari pada frekwensi natural pondasi beton. Selain daripada itu, LTS memiliki efek vibrasi yang lebih rendah dari HTS.
Namun penerapan azas LTS tidak disarankan buat RE yang mempunyai RPM rendah ataupun bervariasi. Untuk kasus seperti ini, azas HTS dianggap lebih baik.

Secara umum, rule of thumb jika kita sebagai perencana tidak ada/tidak bisa mendapatkan data analisa dinamis (dynamic analysis) dari RE, sengaja kalimat itu saya tebalkan dan garis bawahi sebagai catatan penting, maka langkah berikut ini bisa kita pergunakan:

a. Struktur pendukung atau pondasi untuk RE CENTRIFUGAL yang mengeluarkan output KURANG dari 500 HP (horse power), maka berat pondasi didesain tidak boleh kurang dari 3 (tiga) kali dari berat RE secara keseluruhan. Terkecuali jika ada pemberitahuan lain dari pabrik pembuatnya.
b. Sedangkan untuk RE RECIPROCATING yang mengeluarkan output KURANG dari 200 HP, maka berat pondasi didesain tidak boleh kurang dari 5 (lima) kali dari berat RE secara keseluruhan. Terkecuali jika ada pemberitahuan lain dari pabrik pembuatnya.

Perbandingan rasio massa 3:1 dan 5:1 ini juga merupakan nilai empiris yang telah lama dipakai perbandingan untuk massa pondasi terhadap massa RE/mesin. Tentu saja nilai perbandingan tersebut bisa kita ubah menjadi lebih kecil dan tentu saja harus dibarengi dengan perhitungan dan bukti terapan dilapangan yang cukup.
Dan meskipun pendekatan dengan metode ini merupakan best practice terhadap rule of thumb, sebaiknya pada pendesainan tetap dilakukan analisa dinamis untuk memprediksi perilaku pondasi akibat RE.

Patut dipertimbangkan bahwa untuk penempatan/lokasi pondasi RE haruslah terpisah dari pondasi dan bangunan lain. Dasar pemikirannya adalah massa pondasi RE maupun efek getaran yang dihasilkan akan memberikan stress/tekanan pembebanan terhadap pondasi dan bangunan disampingnya dan ataupun sebaliknya jika tidak ada pemisahan.

Berbicara tentang jarak pemisahan pondasi RE terhadap struktur lain disampingnya, saya merekomendasikan lebar ruang antara (space) minimal sebesar 2,5 kali lebar pondasi berukuran terkecil.
Nilai ini dianggap sebagai best practice serta karena stress yang diderita tanah dibawah struktur/pondasi lain (pada jarak ruang antara tersebut) tidak akan menimpa tanah dibawah pondasi RE dan sebaliknya. Pada jarak tersebut juga, dapat dihindarkan akibat negative dari transmisi amplitudo getaran yang merugikan lewat tanah disekeliling.

Tetapi, jika nilai jarak antar tersebut tidak bisa diterapkan karena keterbatasan ruang, maka diperlukan perhitungan teknis yang dapat memberikan indikasi bahwa transmisi amplitude getaran masih dapat diterima. Bisa juga dipertimbangkan opsi menggunakan softboard (misalnya gabus/Styrofoam atau bahan yang tidak rigid) atau menggunakan lapisan slurry (campuran semen) yang dibuat seperti dinding atau bahkan sheetpiles yang diletakkan diantara pondasi yang berdekatan. Opsi-opsi diatas tergantung dari hasil perhitungan amplitudo getaran dan perilaku tanah. Jadi bijaklah menyikapi semua informasi yang didapat sebelum memutuskan.

Jika pondasi RE ini terletak diarea paving/pavement atau disekeliling slab beton, maka perlu pula diberikan isolation joint disekeliling pondasi. Untuk penerapan isolation joint ini disarankan lebar minimum 12 mm dan kedalaman sekitar 20 mm dan material adalah sesuai penggunaan yaitu jenis material untuk expansion joint. Untuk itu, ACI 504R (Guide for Sealing Joints in Concrete Structures) bisa dijadikan rujukan.

Dalam menentukan seberapa kedalaman yang layak dari suatu pondasi RE dari muka tanah khususnya untuk pondasi berbentuk blok, ada beberapa pendapat misalnya minimum 50% dari tebal pondasi yang harus tertanam dalam tanah. Ada juga yang berpendapat minimum 80%.

Saya pribadi lebih memilih nilai 80 % dengan pertimbangan faktor penambahan keamanan stabilitas pondasi atas getaran yang bakal diterima. Menurut saya, dengan berkedalaman lebih juga akan meningkatkan ketahanan lateral dan rasio-rasio peredam untuk semua mode vibrasi.

Menyikapi perihal tentang tanah, perlulah dipahami kaitan pondasi yang kita desain dengan tekanan daya dukung tanah. Untuk pondasi dangkal, meskipun kita sudah mendesain pondasi pendukung sebaik mungkin namun itu semua bakal tidak terpakai jika tanah sebagai pendukung pondasi tidak cukup baik kualitasnya, terutama daya dukung.
Untuk itu, diperlukan tindakan uji soil investigation, kecermatan dalam membaca hasilnya, kemudian kecermatan dalam menerapkannya dalam desain. Pemeriksaan terhadap kecukupan kuat tanah dalam kemampuan kapasitas daya dukung statis dan pertimbangan besar penurunan (settlement) perlulah dilakukan.
Termasuk juga efek pembebanan dinamis terhadap tanah dan jika diperlukan, perlakuan lanjutan untuk meningkatkan kapasitas daya dukung dapat saja dilakukan. Banyak metoda yang dipakai, salah satunya seperti metoda dynamic compaction atau dynamic replacement seperti yang telah saya tulis diartikel sebelum ini.

Beberapa patokan untuk daya dukung ijin tanah yang dapat dipertimbangkan adalah:

a. Untuk system pondasi high-tuned: tekanan daya dukung tanah tidak melebihi 50% dari tekanan daya dukung ijin yang diperbolehkan terhadap beban statis.
b. Untuk system pondasi low-tuned: tekanan daya dukung tanah tidak melebihi 75% dari tekanan daya dukung ijin yang diperbolehkan terhadap beban statis.
Sebagai catatan, daya dukung ijin (Q all) untuk pondasi RE berat haruslah dikurangi. Hal ini perlu dilakukan untuk menyediakan lebih besar safety factor terhadap kemungkinan penurunan (settlement) akibat getaran.

Bagaimana dengan penentuan ketebalan minimum? Disamping kita bisa mendapat masukan pertimbangan atas perbandingan berat dari rasio 3:1 atau 5:1, lebih spesifik dalam menentukan ketebalan pondasi minimum adalah azas:
0.60 + L/30 (dalam satuan meter).
Misalnya:
Direncanakan panjang (L) pondasi = 1,50 meter maka ketebalan minimum adalah 0.60 + 1,5 m/30 = 0.605 m.
Faktor lain yang patut dipertimbangkan adalah jika ada anchor bolt yang harus ditanam kedalam pondasi maka meskipun ketebalan minimum sudah terpenuhi dengan azas diatas, ketebalan harus mengakomodasi panjang anchor bolt tertanam plus ketebalan sekitar minimum 100 mm diatas lapisan tulangan terbawah.

Untuk lebar minimum, secara teknis nilai berikut ini dapat dipakai yaitu paling tidak 1,5 kali jarak vertical dari dasar ke garis tengah RE dan tambahkan lebar mimimum dengan area bebas (jarak ke tepi beton) dari base plate/mounting plate/skid RE yaitu 100 mm kesegala arah.
Jadi misalnya lebar skid 1000 mm maka lebar pondasi disarankan 1000 mm + 100 mm (kiri) + 100 mm (kanan) = 1200 mm.
Mengapa? Hal ini untuk mengantisipasi jika terjadi retak pinggir yang sering terjadi karena kekurang cermatan pekerja lapangan dalam mengkonstruksi pondasi dan jarak 100 mm ini dipandang cukup mengakomodasi sudut tekanan yang tercipta dari skid.

Sekarang kita masuk kebagian penulangan dan pembetonan.
Penulangan diperlukan untuk menahan gaya-gaya dalam dan momen yang relatif kecil dalam suatu pondasi berbentuk blok disebabkan oleh ukuran pondasi yang masif. Untuk itu, minimum jumlah tulangan yang diperlukan lebih banyak diperlukan untuk mengantisipasi penyusutan dan temperatur beton.
Di ACI 318 memang tidak secara spesifik menyebutkan kebutuhan tulangan minimum untuk pondasi blok, tetapi pemakaian nilai 0,0018 (sebagai A min tulangan) dikalikan luasan arah melintang beton dapat dipergunakan sebagai panduan.

Pengecualian terhadap nilai tersebut dapat kita lihat di ACI 207.2R jika ketebalan pondasi ternyata setelah kita hitung melebihi 1,2 meter. Dimana ketebalan tersebut kita perlukan lebih pada faktor kestabilan, kekakuan dan peredaman akibat getaran serta untuk mengakomodasi panjang anchor bolt, maka disarankan tulangan minimum memakai diameter 22 mm dengan jarak maksimum antar tulangan adalah 300 mm (center to center), namun saya lebih menyukai pemakaian jarak tulangan 200 mm.

Sedangkan jika kita harus menggunakan pier (pengertian ini beda dengan table top), maka jumlah tulangan minimum yang harus disediakan di pier adalah tidak boleh kurang dari 1% tetapi tidak boleh lebih dari 8% dikalikan luasan potongan melintang beton. Jika mempergunakan pedestal, maka tulangan minimum tidak boleh kurang dari ½%.

Untuk pondasi dengan ketebalan minimum 500 mm, maka haruslah disediakan tulangan susut dan penahan temperature beton sesuai ACI 318. Untuk nilai ED dalam menghitung kekakuan beton, kita memakai:
ED (dalam satuan MPa) = 6560 x kuat tekan beton berpangkat 0,5 (setengah).
Kuat tekan beton disarankan minimum 28 MPa (atau sekitar 4000 psi). Perlu dipahami nilai modulus dinamis elastisitas harus lebih tinggi dari modulus statis.

Bagaimana dengan eksentrisitas pondasi dengan RE yang berporos horizontal?
Kita tahu bahwa eksentrisitas dapat menimbulkan gaya tidak seimbang yang berujung pada penambahan momen. Untuk itu perlulah kita batasi besaran eksentrisitas tersebut. Alasannya adalah untuk meminimalisasi momen-momen sekunder yang bisa saja secara signifikan mempengaruhi frekwensi natural dari pondasi. Misalnya pondasi dimaksudkan untuk mampu menahan gaya tidak seimbang vertical dimana gaya tidak segaris dengan titik pendukung elastis, yang dimana gaya tersebut menghasilkan tambahan gaya putar (rotation) terhadap vertical displacement.
Nah jika kita tidak menetapkan batasan eksentrisitas yang diijinkan maka dikhawatirkan (momen sekunder plus momen utama) akan mengakibatkan 2 jenis frekwensi natural yang mungkin saja secara significant berbeda dengan azas tunggal frekwensi natural dalam satu system pondasi.

Ada beberapa batasan yang saya anut dalam menentukan nilai eksentrisitas ijin.
Yaitu, untuk eksentrisitas horizontal, tegak lurus terhadap bantalan poros (bearing axis), antara titik pusat garis berat pondasi dan pusat area kontak tanah tidaklah boleh melebihi nilai 0,05 dikalikan lebar pondasi. Sedangkan jika searah/parallel dengan bantalan poros, maka tidak boleh melebihi 0,05 dikalikan panjang pondasi.
Jika kita menggunakan pier atau pedestal, maka penerapan nilai tersebut juga harus disesuaikan plus pertimbangan terhadap center of gravity dari RE. Diatas semua itu, saya menyarankan, jika dimungkinkan, sebaiknya hindarilah eksentritas. Sedapat mungkin.

Sedikit bahasan tentang rasio rentang frekwensi natural yang diijinkan.
Pembatasan rentang frekwensi natural yang diijinkan dalam suatu system pondasi berkaitan dalam upaya menghindari bahaya yang terjadi akibat getaran yang berlebihan. Secara umum, rasio antara frekwensi operasi mesin (f) dengan frekwensi natural dari system pondasi f(n) tidak diharapkan berada pada rentang 0,7 hingga 1,3.
Sehingga, untuk frekwensi natural HTS harus berada dibawah nilai 0,7 dan untuk LTS f/f(n) nilainya harus diatas 1,3. Seperti yang kita ketahui, jika rasio f/f(n) mendekat angka 1, akan terjadi penambahan peningkatan secara cepat terhadap amplitude getaran.
Untuk itulah dalam menyediakan factor keamanan terhadap resonansi getaran, kita membatasi rentang frekwensi natural ini. Diluar rentang 0,7 – 1,3 ini, respon dinamis maksimum dari system hanya terbatas sedikit lebih besar dari nilai defleksi statis system pondasi.

Meskipun demikian, pembatasan rentang frekwensi natural ini sangat sulit dicapai jika kita mendesain suatu system struktur yang rumit seperti halnya kombinasi kekakuan steel structure dengan sistim pondasi, pondasi untuk RE yang memilik beragam mode kecepatan, pondasi untuk RE yang sangat berat (turbo compressor yang berdimensi luar biasa besar misalnya), maka kita harus menyediakan perhitungan yang lebih rumit (misalnya menghitung maksimum kecepatan getaran dalam fasa dan 180 derajat diluar fasa, penentuan lokasi dimana amplitude getaran yang dominan berada dan lain sebagainya). Jika nanti ada kesempatan, untuk serba serbi frekwensi natural ini akan saya bahas dalam artikel tersendiri.

Untuk itu jika kita harus menyediakan suatu platform struktur baja, terutama jika mendesain pondasi RE dengan memakai TT (table top), maka platform tersebut sebaiknya terpisah dengan system pondasi TT. Untuk bagaimana supaya platform dapat bernilai aman dan nyaman bagi pemakai dilapangan, design engineer sebaiknya membaca ISO 2631-1 & ISO 2631-2. Referensi itu membahas tentang bagaimana respon seseorang terhadap getaran bangunan dan kurva berat respon pada kesamaan gangguan terhadap tubuh dan metoda-metoda bagaimana cara mengatasinya.

Diluar semua perhitungan teknis diatas kertas, seorang engineer haruslah memiliki “sense of engineering” atau juga disebut “engineering feeling”. “Rasa” ini tidak ada kriteria bakunya namun bisa terbentuk dan terasah jika seorang engineer setia pada kemauan untuk berkarya sesuai bidangnya.
“Rasa” ini juga bisa membimbing seorang engineer dalam mendesain suatu konstruksi yang kuat dan aman, tepat sasaran, tidak rumit, mudah dilaksanakan serta hemat biaya.

Sedikit cerita tentang engineer copas (copy paste).
Suatu ketika karib saya mengirim email, meminta bantuan saya memeriksa pekerjaan desain pondasi RE (generator/genset) yang dikerjakan staffnya. Setelah membaca hitungan desain, belum lagi saya memeriksa hitungan yang dikirimkan tersebut, saya langsung mendapat kesimpulan staff karib saya ini hanya melakukan engineering copas. Sang staff yang mengaku jebolan konsultan engineering, hanya mengganti angka-angka (dari suatu perhitungan pondasi lain) dan memberikan kesimpulan dimensi serta menyebutkan bahwa desain tersebut aman. Aman dari hongkong? Hehehehehe..
Dalam perhitungan tersebut, tidak ada hubungan data teknis dari mesin generator dengan desain pondasi dibawahnya dan ajaibnya dibawah pondasi generator diberikan usulan menggunakan cerucuk dolken kayu untuk meningkatkan daya dukung tanah, yang sayangnya sang staff tidak menuliskan berapa daya dukung tanah yang dihasilkan dengan metoda cerucuk.
Sehingga tidak ada perhitungan settlement dan daya dukung yang ditulis hanya imajinasi saja. Sedangkan data teknis generator, yang seharusnya diperhitungkan untuk penentuan system pondasi, tidak dipakai dan hanya untuk pajangan supaya jumlah halaman teknis jadi panjang dan terkesan bagus.
Saya kemudian menganjurkan karib saya untuk meminta staff tersebut mendesain ulang dengan kaidah-kaidah yang benar, desain harus memiliki esensi dan tidak copas. Model copas inilah yang kita harus hindari.

Memang tidak sulit mengganti sekedar angka namun itu berarti kita hanya berkemampuan meniru, yang kosong, tak berbobot, tak ada nilainya.

Berikut ini saya sajikan contoh perhitungan desain pondasi RE, silahkan dipelajari untuk mengambil intisarinya/esensinya, melakukan trial dan error, sampai kita merasa kita mampu melakukan desain secara mandiri.

Silahkan di klik hyperlink dibawah ini:

Foundation Design Analysis

TAHAPAN PERHITUNGAN STRUKTUR

Jika kita dalam posisi sebagai seorang civil/structure engineer dan karena tuntutan tugas kita harus melakukan perhitungan struktur  baik struktur baja maupun sipil khususnya pondasi, kita dituntut harus berhati-hati, benar dalam asumsi dan cermat dalam melakukannya. Dalam artikel saya kali ini, saya tulis beberapa hal dasar yang perlu dilakukan oleh seorang civil/structure engineer dalam melakukan tahapan perhitungan struktur.

  1. TUJUAN PERHITUNGAN

Dalam melakukan perhitungan nantinya, perlu kita ketahui untuk apakah perhitungan tersebut dilakukan, Normal tujuannya adalah:

  1. Untuk membuat engineer mendapatkan desain yang aman, layak dan ekonomis.
  2. Penyediaan catatan sebagai kemungkinan referensi dimasa datang.
  3. Pemenuhan persyaratan sesuai spesifikasi dan code/international standards terhadap desain yang dikerjakan.
  4. Memfasilitasi penentuan akibat yang akan terjadi jika dilakukan modifikasi terhadap struktur dimasa datang.

 

  1. UNIT/SATUAN

Pada umumnya, satuan yang digunakan dalam perhitungan memakai SI satuan metric. Kecuali jika perhitungan dibuat sesuai Code atau memakai program computer, yang belum disesuaikan dengan metric, maka pemakaian satuan konvesional boleh dilakukan. Pada ujungnya, untuk lebih memudahkan padanan dengan satuan yang dipakai oleh disipiln lain, sebaiknya hasil perhitungan dikonversikan ke metrik.

  1. SIMBOL-SIMBOL

Symbol-simbol yang dipergunakan dalam desain struktur baja seharusnyalah memiliki konotasi yang sama terhadap AISC Manual of Steel Construction, sedangkan untuk struktur beton, padanannya adalah ACI 318 atau SK SNI untuk proyek bersifat lokal. Simbol-simbol lainnya sebaiknya disamakan dengan Code/International Standards yang berlaku dan dipakai sebagai referensi. Konotasi/pengertian symbol yang dipergunakan dalam perhitungan, secara umum harus dituliskan pada awal perhitungan. Gunanya untuk memudahkan pembaca/pemeriksa sewaktu mengkaji dokumen perhitungan tersebut.

Sedangkan untuk simbol tertentu yang dipakai dalam suatu persamaan, sebaiknya juga ditulis dalam cakupan persamaan tersebut, boleh sesudah ataupun sebelum persamaan tersebut diketengahkan.

 A. PERSAMAAN

Persamaaan-persamaan, grafik, nomograf dan lain sebagainya yang dipakai dalam kalkulasi sebaiknya:

  1. Merupakan turunan/derivative dari kalkulasi dasar, atau
  2. Merujuk pada standard yang relevan dengan memberikan asal usulnya, atau
  3. Jika diambil dari textbook, maka diperlukan juga salinan/copy dari halaman diaman persamaan/grafik itu diambil.
  4. Biasakan menggunakan persamaan yang biasa dan mudah dikenali seperti PL/4, WL²/8 dan lain-lain.

 B. ASUMSI

Asumsi yang diambil dimana perhitungan didasarkan haruslah ditulis dengan jelas. Setiap asumsi yang diambil untuk mendukung perhitungan harus jelas menggambarkan dan memiliki data yang sesuai.

Perhitungan yang dilakukan juga harus memberikan sepintas ulasan acuan dasar (philosophy) yang dipergunakan dalam desain tersebut. Termasuk didalamnya adalah konsep yang mungkin diadopsi dari sumber/referensi lain.

 C. PARAMETER

Nilai-nilai dari parameter ditulis dibagian awal perhitungan. Tidak perlu kita menjustifikasi nilai parameter yang telah biasa digunakan dan diterima secara umum seperti Young’s modulus, Poisson’s ratio, koefisien tarik/tekan dll. Namun untuk nilai parameter yang bersifat spesifik, barulah kita harus memberikan justifikasi, apakah dengan menuliskan sumbernya (seperti hasil studi atau laporan pemeriksaan tanah) ataukah ringkasan dasar penggunaan parameter tersebut ataukah  kita ambil dari referensi yang dipercaya secara umum maupun Code. Contohnya adalah:

  1. Perbedaan temperatur.
  2. Tegangan permukaan tanah, daya dukung ijin, penurunan/settlement ataupun perbedaan nilai penurunan permukaan tanah.
  3. Tekanan angin, dapat dihitung dari kecepatan rata-rata angin daerah dimana desain kita akan dipergunakan dan exposure factor. Biasa ada referensi yang sahih dari pihak berwenang seperti Badan Metrologi dan geofisika (BMG) lokal. Perhitungan nilai parameter tersebut harus mengemukakan kecepatan dasar angin terhadap tinggi, bentuk, arah hembusan (gust) dan importance factor yang dipakai.

 D. PRESENTASI PERHITUNGAN

Tampilan presentasi perhitungan selayaknya sebagai berikut:

a. Kepala Judul berisikan:

  1. Jika kita melakukan untuk kepentingan perusahaan atau Klien, maka tulislah nomor administrasi yang seharusnya. Biasanya sudah ada garis besar penomoran dari Klien/Perusahaan. Selanjutnya work order atau nomor SPK.
  2. Nama pembuat perhitungan (engineer ybs) dan nama pemeriksa (checker).
  3. Judul desain perhitungan, yang harus menggambarkan isi kandungan perhitungan. Misalnya Perhitungan Pondasi Turbo Compressor KT-2010 atau Perhitungan Struktur Shelter Steam Turbin ST-007.
  4. Tanggal sewaktu perhitungan itu dibuat.

b. Cover sheet atau halaman depan setiap paket dokumen perhitungan diberi label nama untuk memudahkan identifikasi sesuai Job Order, Engineering Order ataukah Study/Report  Order. Penomoran halaman juga harus runtut.

c. Jangan lupa daftar isi, daftar codes/standards dan referensi lainnya yang sesuai. Jika memakai referensi spesifikasi dari Klien, indikasikan juga tanggal rilis dari spek tersebut. Ini gunanya utnuk menghindarkan salah pengertian dikemudian hari jika spek perusahaan/klien tersebut ternyata berubah dimasa depan diluar sepengetahuan engineer.

d. Perhitungan haruslah diperiksa oleh pihak yang yang berkompeten sebelum secara resmi dirilis atau diserahkan kepada Klien. Pemeriksa haruslah memastikan bahwa setiap isi halaman dokumen telah benar dan hasil perhitungan dapat diverifikasi dan dipertanggung jawabkan.

e. Bahasa yang dipergunakan. Tergantung permintaan Klien. Untuk proyek internasional ataupun yang memiliki hubungan dengan pihak dari warga negara lain, tentu harus memakai bahasa Inggris.

f. Perhitungan struktur tersebut harus memuat kriteria desain, persyaratan beban-beban utama, kombinasi beban layan kritis dan factor kritis kombinasi beban. Kriteria desain ini tentulah harus sesuai dengan proyek yang sedang dikerjakan. Artinya, kita tidak memakai kriteria desain berdasarkan proyek berbeda yang pernah dilakukan meskipun banyak factor kesamaannya. Misalnya kita pernah mendesain onshore platform buat proyek A di daerah Papua, maka kriteria desain proyek tersebut janganlah dipakai untuk proyek onshore platform proyek B di daerah Balikpapan.

g. Dokumen perhitungan tersebut juga harus memuat urutan yang benar dalam menuliskan sub judul. Sehingga pembaca/pemeriksa mengerti secara benar runtutan perhitungan. Berilah penebalan atau garis bawah untuk sub judul guna memudahkan pembedaan. Contohnya menghitung ketebalan base plate untuk struktur baja yang akan didukung. Urutannya secara sederhana dalam perhitungan adalah asumsi pembebanan, statika struktur (gaya dan momen yang bekerja), pemilihan material baja untuk struktur atas. Baru kemudian perhitungan base plate.

h. Sediakan juga rangkuman dasar perhitungan  secukupnya diawal sehingga pembaca mengerti metode yang dipergunakan dalam perhitungan tersebut. Sketsa atapun gambar sederhana perlu ditampilkan.

i. Perhitungan struktur baja khususnya, harus lengkap dengan detail perlu seperti koneksi momen ataupun koneksi khusus di joint tertentu.

j. Pada akhirnya, sebelum dirilis, dipastikan bahwa dokumen perhitungan sudah lengkap dan benar serta memuat lampiran jika diperlukan.

F. PERHITUNGAN MEMAKAI KOMPUTER

Untuk perhitungan memakai bantuan computer, yang sudah jamak saat ini, ada beberapa hal yang perlu diperhatikan:

  1. Pemodelan computer haruslah disertai dan atau memperlihatkan nomor joint dan member, kondisi/asumsi support dan pembebanan.
  2. Output perhitungan dengan bantuan software computer haruslah memperlihat input sebelumnya. Lembar pertama pada hasil computer run ditanda tangani atau diberi inisial oleh engineer yang bertanggung jawab atau yang membuat perhitungan. Jika diminta oleh Klien untuk memberikan gambaran program computer yang pergunakan, meskipun misalnya kita memakai software program calculation terkenal, kita harus juga memberikannya dan dirangkumkan untuk hal-hal yang penting saja. Rangkuman itu berisikan dasar dan cakupan analisa, verifikasi data input, interprestasi hasil dan penentuan apakah hasil perhitungan tersebut sesuai dengan persyaratan.
  3. Hasil perhitungan dapat disalin/copy dalam bentuk CD ROM kepada klien.
  4. Program perhitungan menggunakan computer yang diterima secara umum adalah STAAD III/STAAD Pro, STRUCAD, SAP 2000, ETABS, PCAMAT, ENERCALC, PCA-COL, NASTRAN, STRUDDLE, SACS. Namun untuk struktur onshore biasanya menggunakan STAAD Pro.

 

G. CHECK LIST DESAIN SIPIL/STRUKTUR

Dalam menghitung suatu desain, saya sarikan check list berikut ini sebagai panduan umum. Check list ini memuat persyaratan kunci antara lain:

a. Kajian Skedul/Jadwal.

  • Apakah dalam mendesain ada batas jadwal yang harus diikuti.
  • Jika ada, berapa lama dan apakah skedul tersebut wajar untuk mendesain struktur yang dimaksud.

b. Prosentase tahapan penyelesaian desain. Rekomendasinya adalah:

  • Geoteknik dapat dihitung sebagai progress 30%.
  • Desain Sipil dihitung sebagai progress 60%.
  • Desain Struktur dihitung sebagai 90%.

c. Kajian Dokumentasi. Jumlah dokumen hardcopy yang harus diserahkan ke Klien:

  • Proposal proyek. 1 hard copy dari seluruh dokumen per kajian.
  • Detail desain. 1 paket dokumen lengkap per kajian.

d. Cakupan Pekerjaan (scope of work/SOW):

  • Apakah SOW sudah tercakup dalam paket perhitungan.

e. Kajian Dokumen-Dokumen. Apakah semua dokumen yang diperlukan, termasuk paket perhitungan, telah disetujui oleh Klien. Misalnya:

  • Dokumen Sipil
  • Dokumen Geoteknik.
  • Dokumen Struktur. Dalam hal ini tidak termasuk shop drawing dan MTO. Kedua jenis dokumen ini tidak perlu di serahkan kepada Klien.

f. Index Gambar. Apakah index gambar sesuai dengan penomoran administrasi yang disepakati dengan Klien. Misalnya:

  • Index A – Rencana tapak (plot plan).
  • Index B – Konstruksi Bangunan (Building)
  • Index C – Konstruksi Beton
  • Index D – Arsitektural
  • Index E – Struktur Baja

g. Penyelesaian Paket Desain. Apakah paket desain telah komplit. Misalnya:

  • Gambar Tapak, konstruksi beton termasuk pondasi, struktur baja, kontruksi sipil/drainase, gambar arsitektur bangunan kilang dll.
  • Perhitungan beton termasuk desain pondasi, perhitungan seluruh struktur baja termasuk pipe support, perhitungan bangunan tahan ledakan (blast resistant building) dll.

h. Satuan. Apakah perhitungan menggunakan SI metric ataukah Imperial Unit.

i. Simbol-simbol. Apakah desain struktur baja dan sipil memiliki kesamaan notasi atau nomenklatur dengan AISC Steel Manual dan Code ACI 318 atau SK SNI.

j. Persamaan. Apakah seluruh persamaan yang dipakai dalam perhitungan desain cukup jelas?

k. Asumsi. Apakah dasar asumsi telah secara benar dipergunakan dan memiliki dasar teknis yang bisa dipertanggungjawabkan.

l. Parameter. Apakah nilai-nilai parameter yang dipergunakan perlu dijustifikasi?

m. Kandungan Perhitungan. Apakah dokumen perhitungan telah mengandung seperti hal berikut ini:

  • Nama pembuat (Originator).
  • Nama pemeriksa (Checker).
  • Judul yang menggambarkan isi perhitungan.
  • Tanggal perhitungan dibuat.
  • Daftar isi.
  • Daftar Code dan referensi.
  • Gambaran umum metodologi perhitungan.
  • Kriteria desain.
  • Pembebanan dan turunannya.
  • Sketsa/gambar untuk imaji perhitungan.
  • Perhitungan tersendiri, manual, untuk sambungan khusus termasuk momen sambungan balok/kolom (khususnya perhitungan struktur baja).

n. Perhitungan Komputer. Apakah perhitungan telah memenuhi, paling tidak, seperti hal dibawah ini:

  • Input data program sudah diperiksa untuk memastikannya benar.
  • Pemodelan computer ditampilkan dan menunjukkan penomoran joint dan member, kondisi support dan pembebanan.
  • Output hasil perhitungan bersama input yang berkaitan.
  • Lembar rangkuman hasil analisa setelah dipilih dari output computer.
  • Rekaman/salinan hasil perhitungan dalam bentuk CD.

o. Jika memakai STAAD III/Pro, input computer – parameter desain:

  • Apakah faktor Kz dan Ky (rasio efektif panjang kolom) telah diinput dalam parameter desain.
  • Apakah factor Lz dan Ly ( panjang bebas/tak terkekang dalam local z dan axis y) telah diinput untuk menghitung rasio slenderness kolom.
  • Apakah balok UNL (panjang bebas/unbraced length) telah diinput untuk menghitung kuat ijin tekan balok.

p. Kajian Resiko. Apakah kajian resiko telah dibuat untuk bangunan kilang. Jika sudah, apakah telah diserahkan kepada Klien.

q. Desain Bangunan. Apakah SOW juga mencakup tipe bangunan kilang yang harus didesain. Misalnya:

  • Bangunan biasa.
  • Bangunan tahan ledakan (blast resistant building). Apakah data sheet untuk persyaratan desain bangunan jenis ini telah ada?
  • Pre-Engineered Building (PEB). Apakah data sheet juga telah tersedia.
  • Struktur bermacam bangunan sipil.

r. Material yang dipergunakan. Apakah telah ditentukan jenis material yang akan digunakan. Misalnya material untuk desain:

  • Konstruksi baja.
  • Konstruski beton.
  • Dinding blok penahan beban.
  • Kombinasi antara beton dengan baja (komposit).
  • Pre cast dan beton Pre Stress
  • Lain-lainnya sesuai tujuan desain.

s. Stabilitas Struktur.  Apakah bangunan struktur cukup memiliki kestabilan lateral dan longitudinal melalui:

  • Kekakuan rangka momen sambungan (struktur baja).
  • Rangka terkekang (struktur baja).
  • Kombinasi antara kekakuan dan rangka terkekang.
  • Sistem sambungan yang lain.

t. Slab atap bangunan kilang/lantai. Tentukan jenis slab yang dipakai. Misalnya:

  • One-way concrete slab.
  • Two-ways concrete slab.
  • Komposit antara decking beton slab termasuk shear connector jika memakai struktur komposit balok baja.
  • Non-komposit decking slab beton.
  • Slab yang ditunjang oleh balok baja.
  • Slab yang ditunjang oleh rangka (truss) atau joist system.

u. Ketebalan Slab. Apakah nilai defleksi telah diperiksa untuk memastikan nilai minimum ketebalan slab sesuai persyaratan di ACI.

v. Tipe Pondasi Bangunan. Apakah telah ditentukan jenis pondasi yang akan dipergunakan. Contohnya:

  • Pondasi sebaran (spread footing).
  • Pondasi kombinasi.
  • Pondasi lajur (strip footing).
  • Pondasi rakit (raft/mat footing).
  • Dan lain sebagainya.

w. Detail Bangunan Kilang. Apakah telah cukup tersedia detail tampak (plan), elevasi dan potongan di dalam gambar yang menampakkan detail struktur bangunan?

x. Grade Material Baja. Apakah grade/kelas material baja telah sesuai dengan spesifikasi yang dipersyaratkan.

y. Sambungan Konstruksi Baja. Apakah material sambungan-sambungan balok/kolom/bracing telah sesuai dengan spesikasi yang disyaratkan.

z. Material Anchor Bolts dan Base Plate. Apakah jenis material anchor bolts dan base plate sudah sesuai yang dipersyaratkan? Termasuk pemeriksaan detail-detail bentuk atau tipenya.

aa. Metal Decking (pada slab). Apakah technical properties metal decking yang digunakan untuk struktur slab baik lantai maupun atap telah diperiksa. Termasuk didalam pemeriksaan adalah gambar-gambar yang disediakan.

ab. Grating. Apakah grating didesain untuk menahan beban hidup dan beban lalu lintas (orang dan barang) diatasnya? Periksa juga system sambungan/perletakan grating.

ac. Rangka Batang Atap ataupun Lantai.

  • Apakah detail sambungan rangka batang (di las atau dibaut) telah diperlihatkan digambar.
  • Apakah batang-batang tersebut didesain untuk menahan gaya-gaya actual yang terjadi.
  • Apakah ikatan dasar rangka (truss bottom chord) telah dikekang secara benar.
  • Pemeriksaan yang sama juga harus dilakukan untuk splice struktur baja.

ad. Lengan (jib) Crane. Apakah lengan crane telah didesain untuk menahan beban yang diaplikasikan pada saat posisi lifting (pengangkatan) dalam posisi jarak penuh (full range). Termasuk pemeriksaan defleksi/lendutan (termasuk kolom penopang) dan eksentrisitas beban yang dapat menyebabkan tekuk major dan minor  serta torsi pada kolom.

Ditulis oleh:

Thomas Yanuar Purnoto

SPECIALIST – Civil & Structural

Utilities Package (5B)

Saudi Aramco Total Refining & Petrochemical Co. (SATORP)

192-18, Gwanhun-dong, Jongno-gu, Seoul.

KMI (Komunitas Migas Indonesia) Member:  070171

Ikuti

Get every new post delivered to your Inbox.

Bergabunglah dengan 73 pengikut lainnya.